Author: Jillian Chambers

New Compound Helps Activate Cancer-Fighting T Cells

By Colin Poitras, UConn Communications

An illustration showing interactions between components of the AH10-7 compound (yellow), an immune system antigen-presenting cell (gray), and an invariant natural killer T cell (green and blue) that spark activation of iNKT cells in ‘humanized’ mice. (Image courtesy of José Gascón/UConn)
Researchers Amy Howell and José Gascón of the chemistry department discuss a molecular simulation on a laptop monitor in the academic wing of the Chemistry Building. (Sean Flynn/UConn Photo)

Invariant natural killer T (iNKT) cells are powerful weapons our body’s immune systems count on to fight infection and combat diseases like cancer, multiple sclerosis, and lupus. Finding ways to spark these potent cells into action could lead to more effective cancer treatments and vaccines.

While several chemical compounds have shown promise stimulating iNKT cells in mice, their ability to activate human iNKT cells has been limited.

Now, an international team of top immunologists, molecular biologists, and chemists led by University of Connecticut chemistry professor Amy Howell reports in Cell Chemical Biology the creation of a new compound that appears to have the properties researchers have been looking for.

The compound – a modified version of an earlier synthesized ligand – is highly effective in activating human iNKT cells. It is also selective – encouraging iNKT cells to release a specific set of proteins known as Th1 cytokines, which stimulate anti-tumor immunity.

Continue reading

New Method Unearths Climate Data from Ancient Soils

Hren By Elaina Hancock, UConn Communications

In Scientific Reports today, UConn researchers report a novel approach to reconstructing ancient climates using analyses of organic compounds in sediments and soils.

This method was developed by former UConn postdoctoral scientist Yvette Eley (now in the Department of Geography, Earth and Environmental Sciences at the University of Birmingham, U.K.) and assistant professor Michael Hren in the UConn Center for Integrative Geosciences. Their new approach makes use of organic compounds found in the waxy, lipid-rich cuticle of plants. These waxy surfaces are critical to plant survival, as they minimize water loss and provide protection from factors such as UV radiation.

The distribution of organic compounds in leaf waxes records information about their growing environment. For instance, when confronted with stressful conditions such as shortage of water, plants can respond by changing the distribution of organic compounds in their leaf wax to combat water loss and improve their chances of survival. Various environmental parameters can therefore result in plants with different distributions of lipids, and these profiles can reveal a lot about the climate those plants were growing in. Continue reading

Chemistry Professor Nationally Recognized for Inventions

By Jessica McBride, Office of the Vice President for Research

Altug Poyraz, left, a graduate student, with Steven Suib, Board of Trustees Distinguished Professor of Chemistry. According to Suib, some of the greatest benefits of being an academic inventor are the opportunities it allows him to provide to his students, many of whom will work in industry after graduating from UConn. (Peter Morenus/UConn File Photo)

Board of Trustees Distinguished Professor of Chemistry Steven L. Suib has some advice for early career faculty and student researchers who are interested in inventing. Given that Suib was recently named a fellow of the National Academy of Inventors (NAI), it would probably be smart to grab a pencil.

“Ask a lot of questions, know the literature, don’t be afraid to move on from ideas that just aren’t working. But above all, keep an open mind and work with other people,” offered Suib.

Throughout his nearly 40-year research career, Suib has lived by these words. As a preeminent expert in solid state chemistry and the synthesis of novel materials with a strong environmental focus, his work has produced numerous discoveries with a variety of applications in several industry sectors.

Continue reading

Tailoring Treatment to Combat Diseased Cells at the Genetic Level

By Jessica McBride, Office of the Vice President for Research

Jessica Rouge, Assistant Professor talking with Ph.D. student Josh Santiana in her research lab in the Chemistry building on Nov. 29, 2017. (Sean Flynn/UConn Photo)

A new drug delivery system that uses a synthetic-biological hybrid nanocapsule could provide a smart technology for targeted treatment of a variety of serious diseases at the genetic level.

The hybrid offers a way to correct diseased cells at the genetic level – while at the same time leaving healthy cells alone – to increase the effectiveness of treatments and reduce unwanted side effects.

“There’s no one-size-fits-all delivery system,” says Jessica Rouge, assistant professor of chemistry at UConn, and author of a new paper on the technology in Bioconjugate Chemistry. “The beauty of this system is that it is programmable, modular, and has the ability to rapidly integrate diverse peptide sequences. It can be tailored to combat new disease challenges as they emerge.”

Continue reading

Professor Flavio Maran Wins Baizer Award

Flavio MaranProfessor Flavio Maran, who leads the Molecular Electrochemistry and Nanosystem Group at the University of Padova and is a Research Professor in the Department of Chemistry at the University of Connecticut, is the new winner of the Manuel M. Baizer Award, awarded by the Electrochemical Society (ECS), which is the largest electrochemical society. The Baizer Award (Manuel Baizer was a great chemist and foremost internationally recognized authority in organic electrosynthesis) was established in 1992 to recognize individuals for their outstanding scientific achievements in the electrochemistry of organics and organometallic compounds, carbon-based polymers and biomass, whether fundamental or applied, and including but not limited to synthesis, mechanistic studies, engineering of processes, electrocatalysis, devices such as sensors, pollution control, and separation/recovery. Prof. Maran will give his Award Lecture in May 2018, at the 233rd ECS Meeting in Seattle, Washington.

Continue reading

Fishing for New Antibiotics

Kim Krieger, UConn Communications

Two potent antibacterials found in fish do their dirty work in unexpected ways, report UConn chemists and colleagues in a paper accepted by the FEBS Journal. The research could point the way to entirely new classes of antibiotics.

Fish suffer from bacterial infections just like humans do. It’s an especially tough problem for farmed fish, which live in close quarters where sickness can spread quickly. Fish farmers know that adding copper sulfate to the water reduces bacterial disease, but they haven’t understood why. Now, a team led by chemists from UConn has discovered that fish make antibacterial peptides that bind to copper and use it as a weapon to slay bacteria.

Peptides are small molecules, made from the same stuff as proteins but much shorter. Biologists knew that these fish peptides, called piscidin-1 and piscidin-3, were antibacterial. But it took a chemist to figure out the copper connection.

Continue reading

2016-2017 Graduate Student Awards

The following awards were presented at the Chemistry Department’s Annual Safety Training on August 24, 2017. 
 
Waring (Scholastic) Award: Highest GPA for the 2016-2017 class.
Tianqi (Kiki) Chen (Rusling)
 
Masterton (Teaching) Awards: To be recommended by the TA committee or by instructors who may nominate their TAs for excellence in teaching. 
Islam Mosa (Rusling)
Mohamed Sharafeldin (Rusling)
Murali Anuganti (Lin)
Megan Puglia (Kumar)
Shelli Miller (Leadbeater)
 
Connecticut Chemistry Research Award: List of publications of the graduate student with full citations, and a nomination letter from the major advisor describing research contributions of the student.
Kyle Lambert (Bailey)
Karteek Kadimisetty (Rusling)
 
Outstanding Service and Research AwardNomination letter from faculty and/or staff describing specific activities or service provided to the department by the student, and a list of publications of the graduate student with full citations, and a nomination letter from the major advisor describing research contributions of the student.
Shannon Poges  (Suib)
 
Excellence in Service Award; Nomination letter from faculty or staff describing outstanding service by a graduate student, over and beyond normal expectation.
Alyssa Hartmann (Rouge)
 
Bobbitt-Chou Graduate Summer Research Fellowship: This is a fellowship to recognize early accomplishment in a student’s graduate studies and the promise of continued success. One student entering their third summer of research will be awarded a $3,500 fellowship. The fellowship will be awarded based on course grades and a letter from the primary research advisor. The letter should specifically address the technical abilities of the student and his/her conceptual ownership and creative contributions to the research project. 
Matthew Guberman-Pfeffer (Gascon)

Synthesizing Pure Graphene, a ‘Miracle Material’

By Jessica McBride, Office of the Vice President for Research

Douglas Adamson, in the lab at the Institute of Materials Science on Aug. 23, 2017. (Peter Morenus/UConn Photo)

Formed deep within the earth, stronger than steel, and thinner than a human hair. These comparisons aren’t describing a new super hero. They’re describing graphene, a substance that some experts have called “the most amazing and versatile” known to mankind.

UConn chemistry professor Doug Adamson, a member of the Polymer Program in UConn’s Institute of Materials Science, has patented a one-of-a-kind process for exfoliating this wonder material in its pure (unoxidized) form, as well as manufacturing innovative graphene nanocomposites that have potential uses in a variety of applications.

Continue reading

UConn Chemistry REU Symposium 2017

The Research Experience for Undergraduates (REU) Program, funded via the National Science Foundation, allows undergraduate students the opportunity to spend their summer conducting research at a REU host institution. Students spend approximately 10 weeks working closely on a research project with faculty members and graduate students. Students will also have the opportunity to utilize the research equipment and facilities specific to the host site.

To culminate their experience, the REU participants in chemistry presented their summer-long projects in a symposium on August 2, 2017. Click through the slideshow below to get a taste of what they accomplished!