Faculty News

Nature Communications Paper Publishing

Enzymes provide optimal three-dimensional structures for substrate binding and the subsequent accelerated reaction. Such folding-dependent catalytic behaviors, however, are seldom mechanistically explored with reduced structural complexity. A recent article in Nature Communications, from collaborated research between Professor Jianjun Cheng at UIUC and Professor Yao Lin at UConn, demonstrates that the α-helix, a much simpler structural motif of enzymes, can facilitate its own growth through the self-catalyzed polymerization of N-carboxyanhydride (NCA) in solvents with low dielectric constants. The leading authors with equal contributions are Ziyuan Song (UIUC), Hailin Fu (UConn) and Ryan Baumgartner (UIUC). In the paper, Hailin Fu developed a new two-stage polymerization kinetics involving a Michaelis-Menton mechanism, which helped to prove the auto-catalytic nature of the NCA polymerizations. The research was facilitated by funding from the National Science Foundation (CHE-1709820 to J.C. and DMR-1809497 to Y.L.). The editors at Nature Communications featured the article in the Editors’ Highlights of recent research on Organic Chemistry and Chemical Biology (https://www.nature.com/collections/wdzvyhgxft/content/prabhjot-saini).

Molecular diagrams
Photo courtesy of: Nature Communications

Song, Z., Fu, H., Baumgartner, R., Zhu, L., Shih, K.-C., Xia, Y., Zheng, X., Yin, L., Chipot, C.*, Lin, Y.* & Cheng, J.* Enzyme-mimetic self-catalyzed polymerization of polypeptide helices. Nature Communications 10, 5470 (2019). https://www.nature.com/articles/s41467-019-13502-w

Meet Professor J. Nathan Hohman

J. Nathan HohmanProfessor J. Nathan Hohman was drawn to chemistry from a young age. As a young teenager, he had a subscription to Popular Science and recalls reading – with great interest – about buckyballs and carbon nanotubes. He was especially drawn to the patterns of connectivity and strength and properties of these unique materials. By his 10th grade chemistry class, Hohman was certain that he wanted to pursue a degree in chemistry. He completed his undergraduate studies at Butler University in Indianapolis, Indiana and went on to study under Professor Paul S. Weiss at Penn State for his Ph.D. From there, a sudden change in Weiss’s appointment led Hohman to complete his studies at the University of California, Los Angeles. From LA, Hohman moved his way up the West Coast, completing a postdoctoral research position in the Stanford University Materials Science and Engineering Department. Shortly after his post doc, he began working at the Molecular Foundry at the Lawrence Berkeley National Laboratory.

After working for three years at the Molecular Foundry, Hohman realized he missed the world of academics and the joys of teaching students. He wanted to be closer to the faculty and students while experiencing the independence that comes from being a faculty member. Hohman chose UConn after searching for a university that would provide him the opportunity to teach and pursue his research interests. Continue reading

Professor Rusling Receives Commercialization Grants


Professor Jim Rusling recently received START and SPARK Technology Commercialization Grants for Self-powered Bioelectronics.

Aiming to commercialize the world’s first battery-free implantable pacemaker, Professor Rusling and his team received two early-stage technology commercialization grants, START ($10K) and SPARK ($50K). Unlike current pacemakers which are battery-powered and require replacement surgery when the battery is drained, the new self-powered pacemaker uses nanogenerator technology to harvest the patient’s body energy and store it in a tiny biosupercapacitor to power pacemakers, potentially for the patient’s lifetime. Commercialization efforts of this product are led by VoltXon inc, a recent startup spun-off from Prof. Rusling’s research and led by Postdoctoral Fellow and CTO of VoltXon, Dr. Islam Mosa and graduate student Esraa Elsanadidy.


For more information about the START and SPARK technology commercialization grants please visit their program website.

UConn Chemistry Professor Receives NSF Grant

The National Science Foundation (NSF) awarded UConn Chemistry Professor José Gascón and Michigan State Professor Warren Beck a grant to study Carotenoid Photophysics in Photosynthetic Light-Harvesting.

With this $590,000 award, the Chemistry of Life Processes Program in the Chemistry Division is funding Dr. Gascón (PI) and Dr. Beck (co-PI) to investigate the energy transfer and photoprotection functions of carotenoids in the proteins of photosynthetic organisms. Continue reading

LambdaVision/Birge Group NASA Phase I SBIR Award

LambdaVision was awarded a NASA Phase I SBIR Award ($125K) to follow up on previous work that was conducted on the International Space Station. Initial experiments used a microgravity environment to manufacture their retinal implant technology, which is aimed at treating patients suffering from blinding retinal degenerative diseases. The NASA SBIR will help them continue this work and evaluate different manufacturing parameters that will allow them to construct the implants both on Earth and on the ISS.

This research was founded by the research group of Robert Birge (Harold S. Schwenk Sr. Distinguished Chair Emeritus; Founder of LambdaVision) and is led by Nicole Wagner (CEO) and Jordan Greco (CSO). Nicole Wagner and Jordan Greco both currently hold Assistance Research Professor positions in the Department.

Click here to read the press release, here to see the list of awardees and here to read a copy of their abstract.

Chemistry Professor Receives Research Excellence Award

UConn Chemistry Professor Dr. Kumar has been selected for the Fulbright US-Australia Research Excellence Award 2019, among six others to represent the US, and will visit Australia in 2020 to carry out research on the 3-D printing of enzymes to make progress toward the realization of Biobatteries. These batteries are intended to use sugar to power personal electronics.


To find out more information regarding the Fulbright US-Australia Research Excellence Award, please visit their website.

Chemistry Faculty Dr. Jie He and Dr. Jing Zhao Receive NSF EAGER

Dr. Jie (Jay) He and Dr. Jing Zhao, both faculty members of the Chemistry Department with appointments in IMS, were recently awarded the NSF Early-Concept Grant for Exploratory Research (EAGER). The grant supports exploratory work in its early stages on untested, but potentially transformative, research ideas or approaches.

Dr. He was awarded $149,991 for his collaborative research entitled Hybrid Quantum Dot-Metal Nanocrystals for Photoreduction of CO2: Synthesis, Spectroscopy and Catalysis. The grant is effective 8/15/2019 to 7/31/2021.

Dr. Zhao was awarded $204,082 for her collaborative research entitled A Low-Cost, “Digital” Biosensing Platform with Single Protein Biomarker Sensitivity. The grant is effective 9/1/2019 to 8/31/2022


Continue reading

Publication in Newest Volume of Inorganic Chemistry

UConn Chemistry Department Head Dr. Christian Brueckner and Chemistry Graduate Student Adewole Atoyebi published a novel process of preparing metalloporphyrins by simply grinding the porphyrin and the metal together in a mechanized mill. The work graced the August volume of Inorganic Chemistry.

Atoyebi, A.O.; Brückner, C. “Observations on the Mechanochemical Insertion of Zinc(II), Copper(II), Magnesium(II), and Select Other Metal(II) Ions into Porphyrins” Inorg. Chem., 2019, 58, 9631–9642.

Dr. Jessica Rouge Receives NSF CAREER Grant

The National Science Foundation recently announced UConn faculty member Jessica Rouge as the recipient of a CAREER grant. The funding, which comes from the NSF’s Macromolecular Supramolecular and Nanochemistry program, will enable the Rouge group to develop novel chemical crosslinking strategies that can be incorporated into DNA nanomaterials. Using a new DNA-surfactant assembly strategy that generates DNA nanoshells compatible with cells and enzymes, the major goal of the grant is to synthesize a combination of peptide and synthetic crosslinkages that can control the nanomaterials assembly and disassembly in complex biological environments. These materials will be specifically designed to have selectivity for certain chemical stimuli that can initiate chemical and/or biochemical reactions. Such strategies are important for developing more sensitive biological sensors and more accurate drug delivery systems.

To learn more about the grant, click here.

Dr. Jessica Rouge and Dr. Nicholas Leadbeater Receive Grants Toward Development of Novel Therapeutics 

Researcher in the School of Pharmacy on Nov. 8, 2018. (Sean Flynn/UConn Photo)

The Office of the Vice President for Research (OVPR) recently announced recipients in the inaugural funding round for the Program in Accelerated Therapeutics for Healthcare (PATH). PATH is a partnership that includes the OVPR, the School of Pharmacy, and the School of Medicine to accelerate the translational pathway for researchers to convert their discoveries to new medical therapeutics.

Under PATH, funding is provided to academic research programs designed to quickly develop novel therapeutic approaches focusing on well validated molecular targets for specific disease areas with an unmet treatment need in the current commercial marketplace. Projects focusing on a wide range of therapeutic interventions (small molecule, biologic, antibody, peptide, gene therapy) are eligible for consideration.

Two UConn Chemistry Professors, Dr. Jessica Rouge and Dr. Nicholas Leadbeater were recipients of the PATH grants. Continue reading